Aqueous Copper(III) and Nickel(III) Tetra-aza-macrocyclic Complexes

By Luigi Fabbrizzi* and Antonio Poggi

(Istituto di Chimica Generale e Inorganica and Laboratorio C N R, Università di Firenze, via J Nardi 39, 50132 Florence, Italy)

Summary The copper(III) and nickel(III) complexes with the novel tetra-aza-macrocycle 1,4,8,11-tetra-azacyclotetradecane-5,7-dionato(2-) $(L^2)^{2-}$, which contains two deprotonated amido groups, can be generated in aqueous solution by chemical or anodic oxidation of the corresponding Cu^{II} and Ni^{II} species and the authenticity of the oxidation states is demonstrated by voltammetric and e s r investigations

ENCIRCLING of nickel by the 14-membered tetra-amine macrocycle L¹ makes the trivalent state easily accessible,¹ as indicated by the moderately positive $E_{\frac{1}{2}}$ value for the +2/+3 redox couple $[E_{\frac{1}{2}}$ (NiL¹)^{2+/3+} 0 97 V vs standard calomel electrode (SCE), in MeCN-0.1 M Et₄NBF₄]² Essentially owing to the larger value of the third ionization energy, the attainment of the trivalent state for the copper analogue is much more difficult [$E_{\frac{1}{2}}$ (CuL¹)^{2+/3+} 1·37 V vs SCE, in MeCN-0·1 M Et₄NBF₄) Furthermore, copper(III) complexes with tetra-amine macrocycles are also unstable in anhydrous acetonitrile³ and cannot be obtained at all in water

The copper(II) complex with the tetra-aza-macrocycle $(L^2)^{2-}$, which contains two deprotonated amido groups and two amine nitrogen atoms, dissolves in water as a non-electrolyte† and is insoluble in the most common organic solvents The complex $[\mathrm{Cu^{II}L^2}]$ in aqueous solution undergoes both chemical (using $\mathrm{K_2S_2O_8})$ and anodic (at a platinum gauze electrode, at about 0.8 V vs SCE) one-electron oxida-

 \dagger Complexation of H₂L² with Cu₂+ in aqueous solution, which involves the simultaneous deprotonation of the two amido groups, has been recently investigated through pH-metric titrations (see M Kodama and E Kimura, J Chem Soc, Dalton Trans, 1979, 325)

J.C.S. CHEM. COMM., 1980

tion, to produce a yellow-brown solution. This process involves the disappearance of the Cu^{II} four-line e.s.r. signal: this is consistent with the formation of a d⁸ complex cation and shows that the oxidation produces an authentic copper-(III) species. Furthermore, addition of a reducing agent $(e.g. Na_2SO_3)$ or imposition of a less positive potential to the platinum gauze electrode, dipped in the yellow solution of the Cu^{III} complex, restores the pink-violet Cu^{II} species. The aqueous [Cu¹¹¹L²]⁺ complex is not indefinitely stable, but decomposes after a few hours at room temperature. Cyclic voltammetry studies at a carbon paste electrode in 0.1-3.0 M KCl solution showed reversible profiles, in which the ratio of the anodic and cathodic peaks was unity in the explored range of potential scan rate $(5-500 \text{ mV s}^{-1})$, and the peak separation was close to 60 mV, as expected for a reversible one-electron process.⁴ The $E_{\frac{1}{2}}$ value is moderately positive (0.65 V vs. SCE, in 1 M KCl, at 25 °C).

Analogous behaviour is observed with nickel; oxidation of the yellow diamagnetic non-electrolyte [Ni¹¹L²] produces a brown aqueous solution of the Ni^{III} macrocyclic complex.

The e.s.r. spectrum of a (5:1) water-methanol solution of the Ni¹¹¹ species, frozen at liquid nitrogen temperature, shows axial symmetry, with g_{\parallel} (2.23) higher than g_{\parallel} (2.02): this is consistent with the formation of a low-spin d7 chromophore in an octahedral environment, $[Ni^{III}(L^2) (H_2O)_2]^+$, and establishes unambiguously the authenticity of the NiIII state. The $E_{\frac{1}{2}}$ value for the Ni^{II}/Ni^{III} redox change, determined from cyclic voltammetry experiments + (0.56 V vs. SCE, in 1 M KCl, at 25 °C), is somewhat less positive than that of the copper analogue, indicating a slightly easier attainment of the trivalent state. However, the difference between the redox potential values of the copper and nickel complexes with $(L^2)^{2-}$ (<0.1 V) appears to be considerably reduced in comparison with that found for the complexes of the 14-membered tetra-amine macrocycle L^1 in acetonitrile solution (0.4 V).

This behaviour may reflect the greater gain in crystal field stabilisation energy in a tetragonal environment for the Cu^{II}(d⁹)/Cu^{III}(d⁸) redox change, with respect to the Ni^{II} $(d^8)/Ni^{III}(d^7)$ process,⁵ as one moves from the tetra-amine macrocycle L^1 to a ligand of enhanced electron donor properties, such as the two-fold negatively charged tetra-aza ligand $(L^2)^{2-}$. The selective stabilisation of Cu^{111} with respect to Ni^{III} by deprotonated amido groups has been observed for polypeptide complexes.⁶

We thank Dr. Alessandro Bencini for assistance with e.s.r. measurements.

(Received, 3rd March 1980; Com. 228.)

‡ Unlike the copper analogue, the nickel complex attains a quasi-reversible behaviour at the carbon paste electrode only at an electrolyte concentration ≥ 1 M.

¹ (a) F. V. LoVecchio, E. S. Gore, and D. H. Busch, J. Am. Chem. Soc., 1974, 96, 3109; (b) L. Sabatini and L. Fabbrizzi, Inorg. Chem., 1979, 18, 438.

² L. Fabbrizzi, J. Chem. Soc., Chem. Commun., 1979, 1063.

³ D. C. Olson and J. Vasilevskis, Inorg Chem., 1971, 10, 463.

- ⁴ R. S. Nicholson and I. Shain, Anal. Chem, 1964, 36, 706.
 ⁵ F. Basolo and R. G. Pearson, 'Mechanism of Inorganic Reactions,' 2nd Edn., Wiley, New York, 1967, p. 70.
- ⁶ F. P. Bossu and D. W. Margerum, Inorg. Chem , 1977, 16, 1210.